Q Explain the computer memory in detail ?

Ans

Computer Memory
A computer system needs memory to store the data and instructions for processing. Whenever we talk about the ‘memory’ of a computer system, we usually talk about the main or primary memory. The secondary memory (also called storage device) is used to store data, instructions and results permanently for future use.
Units of Memory
A computer system uses binary numbers to store and process data. The binary digits 0 and 1, which are the basic units of memory, are called bits. Further, these bits are grouped together to form words. A 4-bit word is called a Nibble. Examples of nibble are 1001, 1010, 0010, etc. A two nibble word, i.e., 8-bit word is called a byte, for example, 01000110, 01111100, 10000001, etc. Like any other standard unit, bytes are grouped together to make bigger chunks or units of memory.

Types of Memory
Human beings memorise many things over a lifetime, and recall from memory to make a decision or some action. However, we do not rely on our memory completely, and we make notes and store important data and information using other media, such as notebook, manual, journal, document, etc. Similarly, computers have two types of memory — primary and secondary.
(A) Primary Memory
Primary memory is an essential component of a computer system. Program and data are loaded into the primary memory before processing. The CPU interacts directly with the primary memory to perform read or write operation. It is of two types viz. (i) Random Access Memory (RAM) and (ii) Read Only Memory (ROM). RAM is volatile, i.e., as long as the power is supplied to the computer, it retains the data in it. But as soon as the power supply is turned off, all the contents of RAM are wiped out. It is used to store data temporarily while the computer is working. Whenever the computer is started or a software application is launched, the required program and data are loaded into RAM for processing. RAM is usually referred to as main memory and it is faster than the secondary memory or storage devices. On the other hand, ROM is non-volatile, which means its contents are not lost even when the power is turned off. It is used as a small but faster permanent storage for the contents which are rarely changed. For example, the startup program (boot loader) that loads the operating system into primary memory, is stored in ROM.
(B) Cache Memory
RAM is faster than secondary storage, but not as fast as a computer processor. So, because of RAM, a CPU may have to slow down. To speed up the operations of the CPU, a very high speed memory is placed between the CPU and the primary memory known as cache. It stores the copies of the data from frequently accessed primary memory locations, thus, reducing the average time required to access data from primary memory. When the CPU needs some data, it first examines the cache. In case the requirement is met, it is read from the cache, otherwise the primary memory is accessed.
(C) Secondary Memory

Primary memory has limited storage capacity and is either volatile (RAM) or read-only (ROM). Thus, a
computer system needs auxiliary or secondary memory to permanently store the data or instructions for future use. The secondary memory is non-volatile and has larger storage capacity than primary memory. It is slower and cheaper than the main memory. But, it cannot be accessed directly by the CPU. Contents of secondary storage need to be first brought into the main memory for the CPU to access. Examples of secondary memory devices include Hard Disk Drive (HDD), CD/
DVD, Memory Card, etc.,
However, these days, there are secondary storage devices like SSD which support very fast data transfer speed as compared to earlier HDDs. Also, data transfer between computers have become easier and simple due to the availability of small-sized and portable flash or pen drives.

Unit Description Unit Description
KB (Kilobyte) 1 KB = 1024 Bytes PB (Petabyte) 1 PB = 1024 TB
MB (Megabyte) 1 MB = 1024 KB EB (Exabyte) 1 EB = 1024 PB
GB (Gigabyte) 1 GB = 1024 MB ZB (Zettabyte) 1 ZB = 1024 EB
TB (Terabyte) 1 TB = 1024 GB YB (Yottabyte) 1 YB = 1024 ZB

Leave a Comment